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1  | INTRODUC TION

Across individuals, development proceeds with remarkable regular‐
ity. By and large, most children become experts in language, motor 
control, and social interaction, with recognizable milestones along 
the way. At the same time, there are meaningful differences between 
individuals. Some differences appear to be systematically related to 
past experiences, whereas others exist despite ostensible similarities 
in circumstances. We know variation in genes is related to variation in 
many outcomes (Plomin, DeFries, Knopik, & Neiderhiser, 2016), and at 
the same time, we know that even from the first stages of embryonic 
development, the structure of an organism is not prespecified by the 
genes, but rather is determined by interactions between prior struc‐
ture and what is present in the local cellular environment (Gottlieb, 

1998; Stiles, 2008). Studies indicate that experiences across the 
lifespan matter for long term outcomes (Sroufe, Egeland, Carlson, & 
Collins, 2005), but at the same time, even extreme factors like trauma, 
abuse, and neglect do not affect all individuals in the same way.

It is no longer contentious that development is the product of 
complex interactions between organism‐internal and organism‐ex‐
ternal factors. However, moving beyond debates about nature ver‐
sus nurture to characterize “the way in which biology and experience 
work together throughout thick and thin” (Gottesman & Hanson, 
2005; p. 263) continues to be a challenge for developmental science.

In this paper, we argue that the key to this puzzle lies in char‐
acterizing daily activity: the mundane day‐in and‐ day out of what 
we perceive and do, who and what we interact with, and the in‐
ternal states that occupy the minutes, hours, and days of our lives. 

 

Received:	26	March	2018  |  Revised:	9	October	2018  |  Accepted:	29	November	2018
DOI:	10.1002/dev.21831		

S P E C I A L  I S S U E

Automated sensing of daily activity: A new lens into 
development

Kaya de Barbaro

Department of Psychology, The University 
of Texas at Austin, Austin, Texas

Correspondence
Kaya de Barbaro, Department of 
Psychology, The University of Texas at 
Austin, Austin, TX.
Email: kaya@austin.utexas.edu

Funding information
This work was supported by NIMH K01 
Award (1K01MH111957‐01A1) to Kaya de 
Barbaro.

Abstract
Rapidly maturing technologies for sensing and activity recognition can provide un‐
precedented access to the complex structure daily activity and interaction, promising 
new insight into the mechanisms by which experience shapes developmental out‐
comes. Motion data, autonomic activity, and “snippets” of audio and video recordings 
can be conveniently logged by wearable sensors (Lazer et al., 2009). Machine learning 
algorithms can process these signals into meaningful markers, from child and parent 
behavior to outcomes such as depression or teenage drinking. Theoretically motivated 
aspects of daily activity can be combined and synchronized to examine reciprocal ef‐
fects between children’s behaviors and their environments or internal processes. 
Captured over longitudinal time, such data provide a new opportunity to study the 
processes by which individual differences emerge and stabilize. This paper introduces 
the reader to developments in sensing and activity recognition with implications for 
developmental phenomena across the lifespan, sketching a framework for leveraging 
mobile sensors for transactional analyses that bridge micro‐ and longitudinal‐ time‐
scales of development. It finishes by detailing resources and best practices to facilitate 
the next generation of developmentalists to contribute to this emerging area.
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Technological advances now make capturing and analyzing large 
volumes of daily activity occurring in natural environments possi‐
ble. From wearable cameras and step trackers to smart homes and 
smart thread, sensors to capture daily activity are literally being 
woven into the fabrics of our daily lives. The widespread adoption 
and presence of these sensors, paired with the coming of age of 
powerful algorithms to automatically extract meaningful activities 
from raw sensor data, allows unprecedented access to dynamics 
of activity in the daily contexts in which development happens. 
Captured over longitudinal time, such data provide a radical new op‐
portunity to tackle the oldest puzzles of development; namely, the 
mechanisms by which experience shapes developmental outcomes.

1.1 | Sensing daily activity: A new lens into 
development

Broadly, wearable or mobile sensors are computer chips small 
enough to be carried or worn (Starner et al., 1997). Developments 
in micro‐processing have led to increasingly smaller devices without 
compromising storage, battery life or computing power. Devices em‐
bedded with mobile sensors have ushered in an era of “ubiquitous” 
computing, referring to the fact that such devices can now be found 
everywhere: in our pockets, on our bodies, our homes and communi‐
ties (Abowd & Mynatt, 2000; Weiser, 1991).

The use of mobile sensors to collect objective, ecologically valid 
data to gain insight into human behavior began in the late 1990s 
(Pentland, 2000). The pioneering studies of Sandy Pentland (Eagle & 
Pentland, 2006) used Bluetooth scans to log proximity between of‐
fice workers’ cell phones. With simple measures of physical presence 
and distance between individuals, they were able to characterize nu‐
merous aspects of social behavior, from friendships to work habits 
and places of informal gathering. This paper was the first suggestion 
that engineering techniques could provide insight into the complex‐
ity of human interactions.

The initial efforts of this new “computational social science” 
(Lazer et al., 2009) were led by computer scientists and engineers. 
However, the field has matured such that it is now increasingly fea‐
sible and common for social scientists to be involved with and even 
lead mobile sensing studies. Indeed, it has been nearly 20 years since 
the first mobile sensing publications geared toward social scientists 
were published (Goodwin, Velicer, & Intille, 2008; Healey, 2000; 
Miller, 2012), with high‐profile calls‐to‐action continuing to emerge 
(Harari, Müller, Aung, & Rentfrow, 2017; Schmid Mast, Gatica‐Perez, 
Frauendorfer, Nguyen, & Choudhury, 2015; Timmons et al., 2017). 
Empirical findings from mobile sensing research are no longer limited 
to engineering and computer science journals, but now span a range 
of disciplinary perspectives, from clinical psychology to personality 
research (Ben‐Zeev, Scherer et al., 2017; Chin, Goodwin, Vosoughi, 
Roy, & Naigles, 2017; Lathia, Sandstrom, Mascolo, & Rentfrow, 2017).

This paper will begin with a review and synthesis of existing 
research in psychology and developmental science focused on an‐
alyzing daily activity collected via mobile and wearable sensors. 

This work indicates the feasibility and unique potential of such 
data to contribute new theories and insights into developmental 
processes. Next, we introduce research from the field of ubiqui‐
tous computing. Advances in this field provide new opportunities 
to capture daily activity across the nested layers of the develop‐
mental system, with implications for a range of phenomena (out‐
lined in Table 1). In the fourth section (“Pushing the envelope”) 
we sketch a framework for leveraging mobile sensors to access 
the reciprocal transactions between participants’ behaviors and 
their internal, social and physical environments as well as the ac‐
cumulation of these feedback cycles over longitudinal time. This 
is the holy grail of dynamical systems approaches to development 
(Thelen & Smith, 1994) and represents the ultimate promise of 
what mobile sensors could bring to developmental science re‐
search. The fifth and final section of the paper provides practi‐
cal advice for developmental scientists wishing to leverage these 
tools within their own work, including advice for collaborations 
and training for students.

2  | DAILY AC TIVIT Y:  A UNIQUE 
CONTRIBUTION

The study of free‐flowing behavior is not common in psychology 
research, which has been dubbed the science of “self‐reports and 
finger‐movements” (Baumeister, Vohs, & Funder, 2007). The psy‐
chological is largely considered to reside within the skull (Hutchins, 
1995), and activity has generally been treated as an indirect way to 
access the internal workings of the mind. Developmental science is 
unique within psychology for its long‐standing focus on observa‐
tions of interactions. This is likely due to the difficulties in admin‐
istering typical standardized measures to preverbal children, as well 
as the consideration of the impacts of social partners and embodied 
interactions to developmental outcomes.

Historically, however, developmental research has rarely in‐
volved studies of natural daily activity (Bronfenbrenner, 1977; Lee, 
Cole, Golenia, & Adolph, 2018). Video recordings of scripted labo‐
ratory interactions are the data of choice in observational studies 
across development (Adolph, 2016), owing to the fact that they 
provide high fidelity access to free‐flowing behaviors that can be 
endlessly observed and systematically characterized. Scripted inter‐
actions allow researchers to elicit specific phenomena that would 
only rarely occur during the short time of a laboratory visit. Video 
records thus function as a microscope for human activity (Goguen, 
1997), allowing researchers to carefully and methodically cap‐
ture both emergent qualities of interactions as well as the precise 
micro‐dynamics of children's activity and interactions (Bakeman & 
Gottman, 1997). The vast benefits of video in laboratory settings 
are such that it is irreplaceable in developmental research. However, 
leveraging mobile and wearable sensors to capture activity in daily 
life can provide unique access to structure and variability unlikely to 
be captured or present in the laboratory.
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TA B L E  1   List of salient developmental constructs across the lifespan, paired with theoretically‐relevant daily activities and sensing 
solutions. All mention of annotation refers to coding of data by trained human annotators; all mention of "detection" refers to automated 
coding via trained machine learning algorithms

Developmental 
construct Relevant behaviors/exposures Sensing possibilities Sample studies

Temperament & 
Personality

Activity
Daily behavior, routines

Amount of motion from accelerometer
Annotated from wearable camera; EMA

Buss et al. (1980)
Brown et al. (2017)

Child stress and 
emotional 
adaptation

Child mood & distress

Regulation

Context of child distress

Early: Crying or laughing detected from 
wearable audio Later: EMA

Early: Duration to soothe detected via 
wearable audio; Later: EMA

Sporadic annotation (e.g. time locked to 
tantrums detected from wearable audio)

Rao et al. (2014); Kim and Clements 
(2015)

Gunthert and Wenze (2011); Silk et al. 
(2011)

Ludwig (2018); Silk, Steinberg, and 
Morris (2003)

Caregiving 
characteristics

Tone of interactions
Physical presence and contact

Joint activity

Contingent language
Parental Sensitivity

Detected from wearable audio
Detected from bluetooth or wearable 

motion sensors
Annotated reading or playing; detected 

mutual gaze from wearable camera or audio
Detected via LENA wearable audio algorithms
Sporadic annotation (e.g. event‐locked to 

distress detected from wearable audio or 
within audio "snippets")

Black et al. (2013); Weusthoff et al. (2013)
Olguın	et	al.	(2009);	Yao	et	al.	(under	

review)
Rehg et al. (2013); Soderstrom and 

Wittebolle (2013)
Zimmerman et al. (2009)
Tobin et al. (2015)

Parental stress Mood
Neurobiological stress reactivity

EMA
Ambulatory cortisol, wearable physiology 

monitors

Gunthert and Wenze (2011)
Schlotz (2011); Hovsepian et al. (2015)

Household 
characteristics

Chaos of home environment

Household routines

Food availability

Detected via wearable or static audio or 
camera

Regularity of meal‐time detected via water 
or electrical meter

Wearable camera

Cook et al. (2018)

Froehlich et al. (2009); Gupta et al. 
(2010)

Jia et al. (2018)

Early perceptual 
development

Visual and auditory experience
Gross motor experience

Fine motor experience

Wearable cameras and audio recorders
Posture and fall detected via wearable 

motion sensors
Wrist‐worn motion sensors; toys with 

embedded motion sensing

Smith et al. (2015)
Nam and Park (2013)
Varkey, Pompili, and Walls (2012); 
Verplaetse (1996); Westeyn et al. (2012)

Language learning Language input and contingency 
of parental speech

Detected via wearable audio (e.g. via LENA 
algorithms)

Zimmerman et al. (2009)

Attention & 
executive function

Daily Cognitive assessments

Time spent distracted in 
attentional focus

Active assessment collected via mobile 
phone app

Detected via wearable motion sensors

Cellphone use monitoring application

Maekawa, Anderson, de Brecht, and 
Yamagishi	(2018)

Tawari et al. (2014) 

Wang, Chen et al. (2014)

Peer, teacher, or 
family interactions 
(incl. e.g. marital or 
sibling conflict)

Quantity of interactions

Classroom activity
Quality of interactions

Contingent speech detected via wearable 
audio

Proximity detected via wearable Bluetooth 
sensors

Detected via static audio recordings
Conflict or supportiveness annotated from 

snippets via wearable audio recorder

Berke et al. (2011)

Olguín	et	al.	(2009)

Wang, Pan, Miller, and Cortina (2014)
Slatcher and Trentacosta (2012); Tobin 

et al. (2015)

Puberty Hormonal changes Ambulatory assessment of saliva samples Schlotz (2011)

Identity formation Visible advertising or stereotypes Wearable camera with some automated 
assistance

Zhang and Rehg (2018)

Academic success Time spent studying

Afterschool activities
Classroom engagement

Detected via multimodal cellphone sensor 
monitoring

Geocoded from GPS data
Detected via pressure‐sensitive seats, 

motion and physiological sensors

Wang, Chen et al. (2014)

Byrnes et al. (2017)
Dragon et al. (2008)

(Continues)
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2.1 | Existing research

A rapidly growing body of research points to the value of char‐
acterizing truly ecological daily activity within developmental 
science. This research indicates that daily activity, far from being 
simply “noisy” or “random,” has consequences for child outcomes 
across domains.

Wearable sensors have provided key insights into the rela‐
tionship between sensorimotor development and early cognition. 
Embodied cognition perspectives emphasize the fundamental link 
between perception and action (Gibson, 1988). The particulars of a 
learner’s body, and the actions available to a learner, determine what 
is perceivable and therefore, what is learnable (Kretch, Franchak, & 
Adolph, 2014; Smith & Gasser, 2005). In turn, these changing expe‐
riences can elicit novel inputs for social and cognitive development 
(Campos et al., 2000; Soska, Adolph, & Johnson, 2010). Sensors that 
can capture the rapid changes in sensorimotor experience across 
children’s first months and years of life have provided new insight 
into these early processes.

Much of this work stems from the use of lightweight cameras po‐
sitioned on children’s foreheads to capture “what’s in view” for infants 
and toddlers (Borjon et al., 2018). Using such techniques, Fausey and 
colleagues (Fausey, Jayaraman, & Smith, 2016) were able to record 
six hours of daily visual experience of individual infant participants. 
Analyses of the footage indicated that the distribution of faces in in‐
fants' view is highest within the first months of life and then decreases 
in the first 2 years, whereas the distribution of hands in infants’ view 
shows the reverse trajectory. These striking regularities have implica‐
tions for what is learned and learnable across the first 2 years of life 
(Smith,	Jayaraman,	Clerkin,	&	Yu,	2018).	For	example,	the	frequency	
with which particular objects appeared in view aligned with early word 
learning, suggesting the importance of these daily exposures for learn‐
ing	outcomes	(Clerkin,	Hart,	Rehg,	Yu,	&	Smith,	2017).

A wide variety of regularities in daily exposure matter for chil‐
dren's outcomes. Traditional measures indicate that the presence 

of household chaos (Vernon‐Feagans, Willoughby, & Garrett‐
Peters, 2016), TV and electronics (Christakis et al., 2009), books 
(Raikes et al., 2006) and neighborhood institutions (Leventhal & 
Brooks‐Gunn, 2000) all have implications for cognitive devel‐
opment. However, questionnaire measures and even objective 
scans of the home (Caldwell & Bradley, 1984) are an imperfect 
proxy of lived experience: just because there are books in the 
home does not mean a child is engaging with them. Emerging 
sensor research has begun linking some dynamic measures of 
experience to developmental outcomes. For example, research 
with teenagers has found that objective GPS‐based (but not sub‐
jective) measures of physical proximity to liquor stores are asso‐
ciated with an increased likelihood of underage drinking (Byrnes 
et al., 2017). Such objective measures of the structure of daily 
experience will likely continue to reveal new insights into devel‐
opmental trajectories.

Perhaps the most extensive focus of developmental sensing re‐
search is on children's early language environments. In the Human 
Speechome Project, Deb Roy famously outfitted his own home with 
enough cameras to capture a near‐continuous record of his own 
child’s experiences from birth to 3 years of age. A combination of 
automated analyses and extensive human annotation was used to 
create a massive dataset characterizing his child's language expo‐
sures: including the words, physical locations, and motion of mul‐
tiple speakers in the house. Analyses revealed that the distinctness 
of the context in which a word was uttered—from its physical lo‐
cation to the other words around it—helped to predict the age of 
production of individual words (Roy, Frank, DeCamp, Miller, & Roy, 
2015). However, the vast resources required to create this dataset 
are arguably yet to outweigh its overall contributions to the field. 
Mobile and wearable sensors are a creative counterpoint to such a 
relatively heavy‐weight setup. By virtue of being able to be placed 
on the body, a single camera or audio recorder can be used in place 
of an integrated multi‐camera system to capture various aspects of 
a child's daily exposures.

Developmental 
construct Relevant behaviors/exposures Sensing possibilities Sample studies

Risky activity (sex, 
drug abuse)

Frequency of content words
Alcohol or other substance use

Common activity by location

Transcription of snippets from wearable audio
Detected via multimodal cellphone sensor 

monitoring; specialized biomarker sensors
Geocoded from GPS data

Pennebaker, Mehl, and Niederhoffer (2003)
Bae et al. (2017);Bertz et al. (2018)

Byrnes et al. (2017)

Aging Cognitive and physical decline Detected via static multimodal platforms Kaye et al. (2011)

Physical & mental 
health

Psychiatric symptoms
Sleep; physical activity; eating 

episodes

EMA
Detected via motion sensors

aan het Rot, (2012)
Bussmann and Ebner‐Priemer (2012); 

Robillard et al. (2015); Thomaz et al. 
(2015)

Other	relevant	
exposures

Phone use
Nutrition

Sugar consumption

Cell phone monitoring application
Annotated via participant‐collected photo 

logs
Continuous glucose monitoring sensors

Harari et al. (2017)
Cordeiro et al. (2015)

Juvenile Diabetes Research Foundation 
(2008)

TA B L E  1   (Continued)
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In this vein, a sizeable body of research has emerged using the 
LENA, a lightweight wearable audio recorder developed to study 
language development (Zimmerman, 2009). The LENA includes 
specialized algorithms developed to identify onset and offset of 
individual parent and child vocalizations, which are then used to 
identify patterns of contingent speech (i.e., conversations) be‐
tween children and their caregivers. Research with the LENA has 
demonstrated that, over and above parental speech, it is the vol‐
ume of conversations that predicts children's vocabulary size and 
school achievement (Chin et al., 2017; Weisleder & Fernald, 2013). 
The LENA has been used to study language environments across 
many populations (reviewed by Wang, Chen et al., 2017). While 
additional algorithms for processing ambulatory audio recordings 
continue to be developed (e.g., Ludwig, 2018), developmentalists 
have also begun to supplement LENA's automated detection algo‐
rithms with human coding to pursue additional questions, such as 
the	impacts	of	parent‐ese	speech	style	(Ramírez‐Esparza,	García‐
Sierra, & Kuhl, 2014) or how speech varies according to activity 
(Soderstrom & Wittebolle, 2013).

Audio data from wearable devices has also been successfully 
used to characterize aspects of caregiving quality and family in‐
teractions across the lifespan. Daily conflict behaviors between 
parents and children have been associated with parental trait emo‐
tionality (Slatcher & Trentacosta, 2012) and depression symptoms 
(Slatcher & Trentacosta, 2011). More daily family conflict has also 
been associated with children's lower cortisol at awakening and 
flatter diurnal slope over the day, indicating more maladaptive re‐
sponses (Slatcher & Robles, 2012). Conversely, more daily maternal 
responsiveness, characterized by warmth, emotional support, and 
expressions of pride, is associated with better immune response in 
teenagers with asthma (Tobin et al., 2015). We are unaware of any 
work that compares objective caregiving measures of daily activ‐
ity with gold‐standard lab situations, or that examines variability in 
caregiving within or across days and its potential associations with 
child outcomes; both key directions for future research. However, 
these studies indicate the feasibility and predictive validity of objec‐
tive measures of daily family interactions across a wide age range.

Physical activity is another readily available marker of daily ac‐
tivity with implications for many domains of development (Pellegrini 
& Smith, 1998). In a pioneering series of studies in the 1980s, Buss 
and colleagues compared the amount of free‐flowing physical move‐
ment as captured by an early motion sensor, the actometer, in a lon‐
gitudinal sample of 3‐, 4‐, and 7‐year‐olds. Findings indicated strong 
stability in children's activity across time, as well as strong correla‐
tions with concurrent and future measures of children's personal‐
ity measures. More active children were independently judged by 
teachers as more outgoing; additionally they were more likely to be 
resistant to adult demands (Buss, Block, & Block, 1980). A follow‐up 
study indicated that mothers of children identified as more active 
via actometer were more likely to be impatient, hostile, and physi‐
cally intrusive in their interactions with their children (Buss, 1981). 
The longitudinal stability of these measures, and their strong asso‐
ciations with personality and parenting measures is striking. These 

associations lead us back to the main puzzles of developmental sci‐
ence: how do relationships between children's daily experiences and 
their outcomes become established? While child activity may lead 
to parental aggression, it is also feasible that the relationship is bi‐
directional, that is, that parental aggression could also contribute to 
child hyperactivity, perhaps mediated by difficulties regulating emo‐
tions. Additionally, while the observed correlations were strong, a 
complete developmental account would provide some insight into 
both lawful continuity and lawful change (Sroufe et al., 2005), or 
why certain children showed stable patterns of activity across time, 
whereas others varied across these three timepoints. Advances in 
sensing mean that future research could begin to disentangle parent 
and child characteristics to quantify how they interact and influence 
one another over time, a proposition we will return to below.

2.2 | Existing research: Lessons learned

Existing research indicates the feasibility and value of sensing daily 
activity to provide insight into development. Below, we synthe‐
size this research to highlight four potential contributions of these 
emerging techniques.

First, while some research indicates a strong correspondence be‐
tween measures derived from structured laboratory paradigms and 
unstructured home activity, other research indicates key differences 
between these measures. For example, the total volume of speech 
in structured interactions is strongly (r = 0.7) predicted by speech in 
unstructured interactions (Tamis‐LeMonda, Kuchirko, Luo, Escobar, 
& Bornstein, 2017). However, as reported by the NICHD Early Child 
Care Research Network, sensitivity in free play and unstructured 
home interactions showed only moderate correlations (r = 0.4), and 
only sensitivity in unstructured interactions showed a main effect on 
attachment outcomes (NICHD Early Child Care Research Network, 
1997). Additionally, negative impacts of caregivers exhibiting less sen‐
sitive care were shown to be reduced when children spent more time 
with their caregivers, suggesting that both the quality and quantity of 
care are distinct and interacting factors relevant for understanding 
outcomes (Ibid).

Second, other aspects of natural activity are simply not present 
in structured laboratory interactions. These include extended peri‐
ods of non‐interaction between parents and their children (Tamis‐
LeMonda et al., 2017), the propensity to walk in circles rather than 
in a straight line (Lee et al., 2018), or the low proportion of faces 
present in the view of toddlers (Jayaraman, Fausey, & Smith, 2015). 
These common but seldom observed‐in‐laboratory features of ex‐
perience may have critical developmental functions (Smith et al., 
2018): children may learn to gaze follow not from looking at eyes 
but looking at hands (Deak, Krasno, Triesch, Lewis, & Sepeta, 2014); 
extended silences between interactions may be critical for consoli‐
dation and marking of semantic boundaries (Tamis‐LeMonda et al., 
2017). Sensing daily activity can provide new access to these previ‐
ously unmeasured aspects of children’s experiences.

Third, sensors allow for the collection of much larger volumes of 
data than would be possible to obtain in the lab. This means that we 
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have a chance to capture activities that occur rarely but may have 
developmental import (VanDam, 2016). Additionally, large volumes 
of data allow researchers to access temporal structure and variabil‐
ity of activity, which can predict outcomes over and above tradi‐
tional summary measures (Li & Lansford, 2018; Sherman, Mumford, 
& Schnyer, 2015).

Finally, the possibility to capture activity over long periods of time 
means sensors can provide access to phenomena which may take 
hours, days, or weeks to unfold, such as the cumulative impact of 
multiple extended tantrums on parental responses to their children, 
and the resulting impacts on children's behavior. The ability to cap‐
ture such transactive reciprocal processes across time holds perhaps 
the greatest promise of sensors for developmental science, a proposi‐
tion we explore further in Section 4 ("The future of mobile sensing in 
developmental science") following a review of ongoing research and 
developments from the ubiquitous computing community.

3  | ADVANCES IN SENSING AND 
UBIQUITOUS COMPUTING

Developmental science stands to benefit from ongoing develop‐
ments from the field of ubiquitous computing. These include techno‐
logical advances for capturing novel datastreams as well as powerful 
“activity recognition” algorithms which transform raw sensor data 
into meaningful markers of activity. In the next section, we provide 
a primer on activity recognition followed by an overview of mobile 
sensing research within ubiquitous computing, focusing on relatively 
stable solutions that hold the most potential for immediate incor‐
poration into research. We organize this research according to its 
potential to provide access to nested levels of the developmental 
system, considering aspects of individual psychobiological activity, 
interpersonal activity, and daily ecological contexts.

3.1 | Introduction to activity recognition

Much of raw sensor data is uninterpretable or meaningless to hu‐
mans: a log of physical changes in patterns of light, motion, or pres‐
sure. Activity recognition is the process by which these signals are 
transformed into markers of meaningful activity, such as steps or 
changes in affect (Bulling, Blanke, & Schiele, 2014). The basis of ac‐
tivity recognition algorithms is to identify distinctive physical signa‐
tures of meaningful activities, which, once learned by a model, can 
be used to predict new instances of behavior.

These algorithms are developed via a “training” process, during 
which labels of identified behaviors or activities (“outputs”, known in 
the field as “ground truth”) are paired with raw sensor data (the “in‐
puts”). Training consists of the learning of optimal “betas” for predict‐
ing ground truth labels from sensor inputs, akin to learning the weights 
on a regression (indeed, regressions are a commonly used machine 
learning model). Via this process, smart watches, for example, use 
changes in light reflected at the wrist to detect changes in the blood 
flow corresponding to heart beats. Similarly, the algorithms in a Fitbit 

can identify steps (and distinguish them from bike riding or driving in 
a car) via characteristic patterns in motion, using features such as the 
typical speed and direction of acceleration of the arm as it swings with 
each step. For research grounded in theory, an important question is 
whether and how reliably raw sensor data can be translated into mean‐
ingful markers of individual, interpersonal, and ecological activity.

3.2 | Sensing individual activity

3.2.1 | Physiological activity

A variety of wearable sensors can capture continuous markers of au‐
tonomic nervous system activity while participants are fully ambula‐
tory, including markers of heartbeat, skin conductance, respiration, 
and temperature. While typically requiring direct contact with the 
skin, the current generation of ambulatory physiological sensors are 
much more comfortable than older generations, such that it is feasi‐
ble to collect 11+ hours/day of usable data for upwards of 4 weeks 
(Rahman et al., 2014). The quality of ambulatory psychophysiological 
recordings is highly variable. Electrode‐based and chest‐strap moni‐
tors should be used when high accuracy data are required, as it is 
known that wrist‐worn smart‐bands provide relatively low‐quality 
indicators of heart rate (Wang, Blackburn et al., 2017). Most wrist‐
based sensors do not provide the resolution necessary to reliably 
detect short‐lasting or subtle physiological changes, or calculate 
high‐resolution physiological indices such as heart rate variability 
(i.e., vagal tone). Multiple companies now also provide physiological 
monitoring solutions that include wearable amplifiers (biopac.com; 
mindwaretech.com). While larger and more cumbersome, these am‐
plified setups allow for accurate identification of complex markers of 
blood flow such as PEP (Cacioppo, Uchino, & Berntson, 1994).

While typically developed for adults, our pilot testing of a variety 
of commercially available and research‐grade devices—both chest‐
worn straps and wrist‐bands (worn on children's ankles)—indicates 
that they appear to provide valid data with young subjects, although 
systematic testing of these claims is warranted.

A major issue with even the highest quality physiological sen‐
sors is that the magnitude of effects of physical activity typically 
overwhelms the subtle physiological signals associated with affect 
and emotion. Thus, it is rare for these signals to be directly used on 
their	own	as	markers	of	stress,	for	example.	One	common	solution	
to this is to restrict analyses of ANS data to periods of reduced mo‐
tion (e.g., Hovsepian et al., 2015). Interestingly, this may be less so 
an issue with infants in particular, as motor activity appears to be 
a more precisely valid indicator of arousal level for pre‐locomotor 
infants (Wass, de Barbaro, & Clackson, 2015) relative to older (self‐
locomoting) participants.

3.2.2 | Affect

Active‐sensing techniques which require participants to actively log 
data or responses are the gold standard for ambulatory assessment 
of affect and internal experiences (Ebner‐Priemer & Trull, 2009; 

biopac.com
mindwaretech.com
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Mehl & Conner, 2011). Repeated surveying of subjective experi‐
ence, also referred to as ecological momentary assessment (EMA), 
was pioneered in the 1980s by Csikszentmihalyi and colleagues 
(Csikczentmihalyi & Larson, 1983; Shiffman, Stone, & Hufford, 2008) 
and is now a well‐established method within psychology (Bolger & 
Laurenceau, 2013). Today, EMAs are typically administered on par‐
ticipants’ mobile phones via a variety of open‐source and commer‐
cially available applications (Kubiak & Krog, 2011; Wilhelm, Perrez, 
& Pawlik, 2012). Many common mood assessments are based on 
the PANAS (Watson, Clark, & Tellegen, 1988) or similar affect scales 
(Peeters, Berkhof, Delespaul, Rottenberg, & Nicolson, 2006), and 
it is common in EMA studies to administer approximately 30 items 
4–6 times a day for periods ranging from 1 week to 1 month (as 
reviewed by aan het Rot, Hogenelst, & Schoevers, 2012).

Within ubiquitous computing research, novel designs for col‐
lection of EMA data are being explored, including picture selection 
(Pollak, Adams, & Gay, 2011), lock‐screen (Zhang, Pina, & Fogarty, 
2016) and smart‐watch designs (Intille, Haynes, Maniar, Ponnada, 
& Manjourides, 2016) as well as methods to record images, audio, 
or video in lieu of survey‐based responses. The latter can provide 
much higher dimensional data and may be less burdensome than tra‐
ditional methods (see, e.g., the use of images in place of food diaries; 
Cordeiro, Bales, Cherry, & Fogarty, 2015). With such novel methods, 
certain caution is required when addressing data validity (Chan et 
al., 2018). While EMA has historically not been subject to the same 
standards as traditional questionnaires within psychology, experts 
in EMA design now emphasize these concerns (Stone, 2017; Stone 
& Shiffman, 2002), recommending, for example, that a minimum of 
three items be used to address individual constructs when examin‐
ing within‐person across‐time variation (Bolger & Laurenceau, 2013; 
Cranford et al., 2006).

Ambulatory affect has also been characterized through a variety 
of “passive” methods where sensor data are logged without active 
intervention by participants. Passive‐sensing affect models have 
been developed using physiological, audio, and motion data (Sharma 
& Gedeon, 2012), as well as social media data (De Choudhury, 
Counts, & Gamon, 2012). An array of algorithms that map physiolog‐
ical parameters to affective states have been published in the com‐
puter science literature (Guo et al., 2013; Kim, Bang, & Kim, 2004). 
However, given the complex theoretical and conceptual issues 
surrounding affect (Frijda, 1986), combined with the relatively lax 
standards of validation within the ubiquitous computing community, 
passive affect sensing is of variable quality and many published mod‐
els would likely not pass more thorough quality control standards. 
This is not surprising given that much laboratory research indicates 
that physiological signals alone cannot differentiate a wide spectrum 
of emotions (Wilhelm & Grossman, 2010). However, some promising 
models distinguishing a more restricted subset of affective states 
have been developed. The best combine physiological and mo‐
tion signals, such as a model developed by the MD2K consortium 
which uses respiration, heart rate and motion to predict stress lev‐
els (Hovsepian et al., 2015). Note that this model was designed with 
both social scientists and engineers, is based on training data from 

a widely recognized stressor (Trier social stress task, Kirschbaum, 
Pirke, & Hellhammer, 1993), and has been validated with concurrent 
EMA in a completely naturalistic situation. We emphasize such crit‐
ical quality control measures further in the practical considerations 
section.

The use of high‐fidelity audio or linguistic content is perhaps 
the most promising avenue for automated assessment of affect. 
Ambulatory audio recordings have been used to identify a variety of 
paralinguistic vocalizations, such as laughing or crying, in both adults 
and	children	(Rao,	Kim,	Clements,	Rozga,	&	Messinger,	2014;	Yatani	
& Truong, 2012). Acoustic features have also been used to identify 
affect and tone within speech, including identification of basic emo‐
tions (Basu, 2002; Rachuri et al., 2010), stress (Lu et al., 2012) and 
emotional arousal (Juslin & Scherer, 2005) as well as clinical symp‐
toms, such as depressive (i.e., flat) tone (Moore II, Clements, Peifer, 
& Weisser, 2008; Taguchi et al., 2018). While promising, as above, 
many of these models have been developed with small samples and 
require additional validation to ensure their robustness. Given the 
importance of affect for social and emotional developmental out‐
comes as well as, e.g., assessments of well‐being this is a key area 
for future research.

Analyses of textual content, known as natural language pro‐
cessing (NLP), have also been successfully used to identify mood as 
well as other individual state and trait characteristics. NLP meth‐
ods have been widely implemented in ambulatory psychological re‐
search with content transcribed from audio snippets (Mehl, 2017, 
as detailed above). More recently, NLP techniques have been used 
on data collected from social media sites or messaging platforms 
(De Choudhury et al., 2012). Both audio snippet and social media 
data have been used successfully to assess mood and affect (De 
Choudhury	et	al.,	2012;	Gill,	French,	Gergle,	&	Oberlander,	2008),	
depressive symptoms (De Choudhury, Gamon, Counts, & Horvitz, 
2013; Rude, Gortner, & Pennebaker, 2004), and suicidality (De 
Choudhury, Kiciman, Dredze, Coppersmith, & Kumar, 2016; Stirman 
& Pennebaker, 2001), among other states. While promising, there 
are some challenges with obtaining sufficient text content for NLP 
analyses. In particular, while audio snippets are now feasible to 
collect at large scale via cell‐phones, automated transcription of 
ambulatory recordings is still not feasible, meaning these record‐
ings require time‐consuming human transcription (Mehl, 2017). 
Additionally, many people do not post frequently enough on social 
media to derive multiple daily markers of affect, and they may be 
unwilling to share content from higher‐density but more private chat 
or messaging platforms, meaning that researchers are often rele‐
gated to use of platforms with relatively volumes of data. Advances 
in automated audio transcription (LeCun, Bengio, & Hinton, 2015) as 
well as privacy‐preserving techniques may increase the feasibility of 
these techniques for large‐scale high‐density research.

3.2.3 | Embodied activity

Reports of activity can be collected via active (via calendars or 
EMAs) or passive methods. The most common passive activity 



8  |     DE BARBARO

recognition models use inertial sensors (i.e., accelerometer and 
gyrometer, which measure linear and angular acceleration of mo‐
tion, respectively) relative position sensors (barometric pressure, 
magnetometer, geolocation data) and ambient light and audio sen‐
sors. These sensors are present in all off‐the‐shelf smart phones and 
many inexpensive wearables (Harari et al., 2016; Lara & Labrador, 
2013).

The most robust and commonly used markers of activity in both 
social and computer science are related to locomotion and sleep 
(Bussmann & Ebner‐Priemer, 2012). Movement can be accurately 
calculated via GPS by simply summing travelled distance, or via al‐
gorithms that consider speed and patterns of motion to summarize 
type or quantity of motion. Movement patterns have been used in 
a number of large‐scale longitudinal studies (Brocklebank, Falconer, 
Page, Perry, & Cooper, 2015; McConnell et al., 2017).

Sleep is another common and robustly detected activity used in 
various large‐scale studies (e.g., Robillard et al., 2015). Actigraphy 
cannot reliably detect certain subtle sleep measures such as sleep 
cycles, night wakings, or sleep efficiency. (Sadeh, 2011). However, 
when compared with gold‐standard polysomnography measures, 
sleep‐wake cycles and total sleep time show over 90% agreement 
in both children and adults (Sadeh, Sharkey, & Carskadon, 1994; 
Sitnick, Goodlin‐Jones, & Anders, 2008). Another developmen‐
tally relevant and highly robust measure is mobile phone use, 
commonly logged by apps used in ubiquitous computing research 
(Harari et al., 2017).

In smaller scale studies, wearable motion sensors have also 
been used to identify a wide variety of activities of daily living, 
for example, distinguishing between eating, drinking, reading, 
watching TV, and vacuuming (Lara & Labrador, 2013; Thomaz, 
Essa, & Abowd, 2015), as well as subtle behaviors such as aggres‐
siveness or self‐injury (Ploetz, Hammerla et al., 2012). Indeed, 
two studies have developed models that can distinguish children's 
locomotor states, including rolling, walking, sitting, crawling, and 
climbing	 (Busser,	 Ott,	 Van	 Lummel,	 Uiterwaal,	 &	 Blank,	 1997;	
Nam & Park, 2013). Generally, recognition of activity appears 
to be imminently possible. However, distinguishing between ac‐
tivities which are physically similar may require users to wear 
multiple sensors (Arif & Kattan, 2015). A powerful alternative is 
to combine sensors from multimodal sensing platforms, such as 
cellphones (as reviewed by Harari et al., 2017; Miller, 2012). For 
example, Campbell et al. (Wang, Chen et al., 2014) developed al‐
gorithms to infer likely studying and partying behaviors by com‐
bining multiple cellphone data streams, including ambient noise 
(loud vs. quiet), activity level (high vs. low), and geo‐coded loca‐
tion (fraternity vs. library) via GPS data. For younger children, it 
may be possible to use a similar approach to access moments of 
focused attention, for example. Namely, cell phone use data com‐
bined with motion sensors embedded in a headband may be able 
to identify a steady focus of gaze while differentiating it from 
sleeping or focus on the phone itself. Similar markers have been 
used to identify quality of attention while driving (Tawari, Martin, 
& Trivedi, 2014).

There is already widespread interest in ambulatory markers of 
risk‐ and health‐promoting behaviors (Bertz, Epstein, & Preston, 
2018), of particular relevance for research in adolescence and 
early adulthood. The use of alcohol and other drugs of abuse can 
be captured via transdermal patches or other physiological signals 
(Simons, Wills, Emery, & Marks, 2015), including, for example, the 
use of wrist‐worn sensors and respiration belts to detect smoking 
behaviors (Saleheen et al., 2015). Considering less obtrusive plat‐
forms, binge drinking has been detected via cell phone features 
such as changes in speed of typing (Bae, Chung, Ferreira, Dey, & 
Suffoletto, 2017).

Critically however, the validity of such less‐common activity 
models must be carefully assessed as they are often developed with 
small samples using laboratory‐based data. For these reasons they 
are best considered a proof of concept requiring thorough quality 
control and additional development prior to use in studies.

3.3 | Sensing interpersonal activity

Within the ambulatory assessment community in psychology, the 
gold‐standard for objective markers of social interaction are qualita‐
tive ratings of audio snippets. In contrast, within the ubiquitous com‐
puting community, “social sensing” has primarily focused on markers 
of proximity and basic acoustic features of audio recordings.

Proximity (i.e., relative distance) between individuals can be de‐
tected through a variety of methods (Barrat, Cattuto, Tozzi, Vanhems, 
& Voirin, 2014). For example, radio‐frequency signals and infrared 
beams can be used to can detect close contact (1–5 feet) as well as di‐
rectionality, which can be used to detect face‐to‐face contact between 
individuals	(Olguín	et	al.,	2009).	In	contrast,	Bluetooth	radio	waves	are	
relatively far‐ranging but provide relatively coarse spatial resolution 
(e.g., distinguishing whether participants are 1–2, 3–4 vs. 5–10 feet 
from one another) (Boonstra, Larsen, Townsend, & Christensen, 2017; 
Montanari,	Nawaz,	Mascolo,	&	Sailer,	2017;	Osmani,	Carreras,	Matic,	
& Saar, 2014). However, Bluetooth is an omnidirectional signal and 
thus cannot be used to detect face‐to‐face contact. While it is tech‐
nically possible to obtain Bluetooth scans every 5–20 s, on most cell 
phones it is only feasible to log scans once every five minutes or so 
due to battery constraints (Boonstra et al., 2017).

Beyond proximity, algorithms have been developed to detect 
the presence or absence of conversation from audio snippets as a 
marker of social interaction (Berke, Choudhury, Ali, & Rabbi, 2011; 
Wyatt, Choudhury, & Bilmes, 2007; Wyatt, Choudhury, Bilmes, & 
Kitts, 2011). For behavioral scientists used to coding caregiver 
warmth or sensitivity, these simple audio and proximity features fall 
painfully short of the complex qualities of a parent–child bond or 
peer relationships. However, it is worth considering the insights into 
daily interactions they may be able to provide.

Algorithms to detect qualitative features of interactions 
from ambulatory audio recordings have not yet been developed. 
However, data from laboratory settings suggest this is feasible. 
Models using features of vocal arousal have been used to auto‐
matically identify empathy and conflict as well as distinguish 



     |  9DE BARBARO

between blame and acceptance in adult‐adult problem‐solv‐
ing interactions (Black et al., 2013; Imel et al., 2014; Weusthoff, 
Baucom, & Hahlweg, 2013). This is another area where collabo‐
rations between developmentalists and engineers could provide 
novel contributions.

3.4 | Sensing the broader ecology

Sensors also hold possibility for capturing aspects of the broader 
contexts of daily activity. For example, specialized sensors can meas‐
ure chemical and pollutant exposure (Mead et al., 2013). GPS can 
be combined with publicly available data to characterize neighbor‐
hood quality scores or momentary environmental exposures (Chaix 
et al., 2013), as well as likely activities at locations such as libraries, 
parks, museums, or fast‐food establishments (Hariharan, Krumm, & 
Horvitz, 2005).

Basic characteristics of the environment can also be automati‐
cally determined via analysis of audio snippets or sporadic images 
(Hodges et al., 2006), including whether an individual is near a road, 
on a bus, in a library or in a lecture (Eronen et al., 2006; Pirsiavash & 
Ramanan, 2012).

Finally, a number of techniques have been developed for rec‐
ognition of household activities with static sensors placed in the 
environment, leveraging Bluetooth and Infrared signals (Cook, 
Duncan, Sprint, & Fritz, 2018), or water and electricity use by ap‐
pliances (Froehlich et al., 2009; Gupta, Reynolds, & Patel, 2010; 
Olguın,	Gloor,	&	Pentland,	2009).	These	techniques	could	be	used	
to unobtrusively capture a number of developmentally interesting 
characteristics, from the number of people in the home to the tim‐
ing	and	regularity	of	meals.	Out‐of‐the‐box	commercial	options	for	
such sensors are not yet widely available but active research in this 
area suggests they may soon be, as we further discuss in Section 5 
("Practical considerations").

3.5 | Summary and challenges

The possibilities for sensing ambulatory activity are vast, and novel 
technologies continue to be developed. We summarize opportuni‐
ties to leverage these techniques to study developmental questions 
in Table 1, which pairs developmental constructs and outcomes with 
theoretically relevant daily activities as well as potential sensing so‐
lutions for accessing those activities. Admittedly, some of the links 
are somewhat tenuous. To take full advantage of the promise of 
mobile sensors, developmentalists must collaborate with engineers 
and computer scientists to obtain valid and high‐quality markers of 
daily activity. Translating traditional constructs into automatically 
sense‐able activity will require creativity, as well as some openness 
to considering simpler physical analogues of subtle behaviors, such 
as in the case of focused attention or caregiver sensitivity. While 
sensed activities may not always map directly onto known labora‐
tory behaviors or constructs, they may still provide valuable insight 
into the developmental process. Ultimately, this is an area with many 
avenues to explore.

4  | PUSHING THE ENVELOPE: THE 
FUTURE OF MOBILE SENSING IN 
DE VELOPMENTAL SCIENCE

Dynamical systems theories emphasize that development is an ac‐
cumulation of decentralized and local interactions occuring in real 
time (Smith & Thelen, 2003, p. 343). Factors internal and external 
to the individual—from genetic, to neural, behavioral and environ‐
mental—are completely bidirectional over the course of individual 
development (Gottlieb, 2000, p. 96). The complexity and scale of this 
system of reciprocal influences means that it has been all but impos‐
sible to objectively characterize, leaving developmental processes 
largely obscured. However, advances in sensing mean we could now 
collect multiple precisely time‐locked and synchronized dimensions 
of organism‐internal and ‐external factors repeatedly and at scale. 
Such data will allow developmentalists to begin to disentangle com‐
plex reciprocal interactions between these factors and quantify how 
they drive developmental trajectories, a truly radical proposition for 
developmental science.

4.1 | An ecological approach: Capturing 
synchronized activity across the 
developmental system

Today, it is possible to collect multiple synchronized datastreams 
that capture not just the actions of a child, but simultaneously, a vast 
array of possible determinants of their actions: from their perceived 
environments and internal states, to aspects of caregiving behaviors, 
and even ecological factors such as household chaos or access to 
museums.

Datasets which can speak to this ecological approach are rela‐
tively rare. In the most impressive example to date, Andrew Campbell 
and colleagues (Wang, Chen et al., 2014) examined how first‐year 
students’ activity over the course of a semester would predict their 
end‐of‐year academic performance as well as daily measures of 
self‐reported stress and mental health symptoms. Students’ phones 
were outfitted with an app that collected widely available sensor 
datastreams, such as screen unlockings, motion patterns, light, and 
GPS data, as well as snippets of ambient sound. Algorithms were de‐
veloped to transform these raw datastreams to access various as‐
pects of students’ activity, from internal states such as mood and 
fatigue, to daily care activities, such as time spent sleeping and exer‐
cising, and proxies for social interactions and studying. Analyses re‐
vealed that while well‐being indicators and self‐care activities begin 
high at the start of the semester, there was a reliable drop leading up 
to exam period (Wang, Chen et al., 2014). Additionally, changes in 
early versus late semester activities successfully predicted students 
end of year GPA (Wang, Harari, Hao, Zhou, & Campbell, 2015; Wang, 
Hartman et al., 2017). Within the mobile sensing community, there 
is a growing interest in such comprehensive ecological approaches, 
with efforts to predict and intervene upon physical and mental health 
outcomes such as psychosis onset and failures in smoking cessation 
(Ben‐Zeev, Brian et al., 2017; Chatterjee et al.., 2016; Insel, 2017).
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However, these efforts have not yet leveraged the full potential 
of these datasets for gaining insight into developmental processes. 
To do so, analyses of such comprehensive ecological datasets need 
to provide interpretable access to theoretically meaningful mecha‐
nisms of stability and change across longitudinal time. At first blush, 
this is at odds with typical computer science and engineering ap‐
proaches which have historically led the majority of mobile sensing 
efforts. In these fields, the goal is often simply accurate prediction 
of outcomes rather than insight into mechanisms. This can lead to a 
“kitchen sink” approach—where sensor streams are selected only by 
virtue of being available on a given platform, or, even when theoreti‐
cally relevant activities are considered, little attention is paid to how 
these may influence one another over time.

Additionally, the models used to analyze these data are often un‐
interpretable. Today, data science is increasingly “hands off”: mod‐
els are provided raw or lightly preprocessed data as input and left 
to independently discover regularities in the data that can be used 
to predict outcomes of interest. These algorithms are powerful: re‐
cent innovations in network‐based modeling have found solutions to 
problems that have been considered unsolvable for decades (LeCun 
et al., 2015). However, there are tradeoffs between computational 
power and interpretability. At the heart of the issue is the fact that 
the more parameters included in a model, and the more complex 
the transformations between inputs and outputs, the more power‐
ful the computational advantage for identifying patterns in the data. 
However, these same features obscure the relations between inputs 
and outputs, making the models themselves less interpretable. From 
an engineering standpoint, when the goal is to solve a problem, be 
it to predict the weather or identify a face within a crowd, model 
interpretability is not required (Breiman, 2001). Similarly, within de‐
velopmental science, if the goal is intervention, including prediction 
of children who may be at greatest risk or identification of who may 
benefit most from a certain intervention, such complex models may 
be the direction of choice.

However, if the goal of developmental science is to learn why and 
how outcomes emerge, these “black box” solutions are problematic 
(but see, e.g., Bongard & Lipson, 2007). Insight into developmental 
processes will require analyses that provide interpretable and mean‐
ingful descriptions about what matters for development.

4.2 | Characterizing transactional dynamics 
within the developmental system to bridge micro and 
longitudinal timescales

Sensor data provide a novel opportunity to characterize and quan‐
tify the transactional processes by which daily activity accumulates 
to drive longitudinal trajectories.

Current gold‐standard transactional analyses typically examine 
lagged temporal relationships across data collected at discrete time 
points, often months apart. We know, however, that individuals 
dynamically affect one another at much shorter timescales, min‐
ute‐by‐minute, hour‐by‐hour, and day‐by‐day (Granic, Hollenstein, 
& Lichtwarck‐Aschoff, 2016). Sensor data are precisely time 

stamped, meaning that they could be leveraged to study the 
micro‐dynamic transactions between factors driving developmen‐
tal outcomes. For example, real‐time child activity data could be 
synchronized with audio recordings characterizing the content or 
quality of parent–child interactions to examine whether variation 
in a child's activity across the day predicts subsequent changes in 
parenting quality or vice versa, or, as may be expected in a complex 
bidirectional system: both, with the possibility of feedback pro‐
cesses which amplify initial differences over time. This is critical 
as recent research suggests, for example, that children with more 
reactive temperaments may be more sensitive to parenting prac‐
tices (Belsky, Bakermans‐Kranenburg, & Van IJzendoorn, 2007) 
while also being more likely to stress and overwhelm their parents 
(Belsky, 1984), thereby potentially exacerbating their own early 
biological predispositions. Similar approaches could be used to 
examine reciprocal processes theorized to drive individual func‐
tioning, such as proposed feedforward relationships between dif‐
ficulties focusing and household chaos (Sroufe, 2012), or mood and 
cellphone use (Twenge, 2017).

We know of two LENA studies that have begun to move in this 
direction. In the first, Warlaumont and colleagues observed that 
parents of children with and without autism were more likely to re‐
spond to children's vocalizations if they were speech‐like rather than 
non‐speech like (e.g., laughter, coughing, etc.). In turn, children's vo‐
calizations were more likely to be speech like if parents had contin‐
gently responded to their previous utterance (Warlaumont, Richards, 
Gilkerson,	&	Oller,	2014).	These	data	suggest	a	“snowballing”	feedfor‐
ward system where more contingent responding begets more speech‐
like vocalizations, begetting more contingent responding. Related 
analyses by Gordon Ramsey have indicated how such feedback loops 
appear to drive longitudinal differences between vocalization rates of 
children at high‐risk of autism relative to typically developing controls 
(Ramsay, Bailey, & Ghai, 2016). However, in the first study, the com‐
pounded effects of these micro‐transactions were not examined at 
the longitudinal timescale; in the second, the resolution of the ana‐
lytic technique did not allow for examination of the micro‐dynamics. 
Together though, these studies indicate the potential for transactional 
analyses that bridge micro‐ and longitudinal timescales.

Empirically characterizing such developmental trajectories is not 
simply a matter of searching for traditional (A‐>B) causal relation‐
ships. In accord with systems thinkers across disciplines (Forster, 
2002;	 Isabela	 Granic	 &	 Patterson,	 2006;	Hutchins,	 1995;	Oyama,	
1985/2000; Taylor, 2000), success in characterizing such complex 
dynamic system will require a shift in empirical goals as well as 
models of causality. In particular, rather than searching to identify 
the direction of causality between characteristics of parent and 
child behaviors, for example, the goal of a DST approach may be to 
identify factors which differentiate dyads who frequently lock into 
such amplifying or feedforward patterns from those who do not. 
Alternatively, it may be possible to identify conditions which lead to 
a shift in the typical trajectory of an interaction, such as what might 
lead a troubled dyad to adaptively respond, or what might destabi‐
lize typically adaptive functioning.
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Previous efforts with high‐density data indicate that there are 
few if any “off the shelf” analyses, and no single analytic tool that can 
characterize the dense, multi‐modal dynamics of interaction (Gnisci, 
Bakeman, & Quera, 2008). However, methods developed to study the 
micro‐dynamics of activity in laboratory settings are readily utilized 
on daily sensor data (Gottman & Roy, 1990). Additionally, methods 
papers by Granic and colleagues and others (Granic & Hollenstein, 
2003; Granic et al., 2016; de Barbaro, Johnson, Forster, & Deak, 
2013) detail the discovery and quantification of theoretically mean‐
ingful structure in high‐density multimodal repeated measures data 
with consideration of longitudinal outcomes. Finally, sophisticated 
tools have been developed for longitudinal analyses of high‐density 
repeated‐measures data (Bolger & Laurenceau, 2013; Kim‐Spoon & 
Grimm, 2016; Krull, Cheong, Fritz, & MacKinnon, 2016). A combina‐
tion of such analysis techniques will likely be required to quantitively 
characterize complex longitudinal trajectories.

Sensor data provide an opportunity to access repeated measures 
of objective high‐density daily activity at a large scale. This proposi‐
tion is at once exciting and terrifying: exciting because we can now 
collect unprecedented datasets to investigate complex developmen‐
tal trajectories, and terrifying because analyses of such complex pro‐
cesses is largely uncharted territory.

5  | PR AC TIC AL CONSIDER ATIONS

In the final section of the paper, we lay out a number of practical 
considerations for developmental scientists interested in incorpo‐
rating mobile sensors into their research. These considerations fall 
into three categories: collection of raw data, translation of raw data 
into markers of behavior, and analyses of behavioral markers. We 
finish with a section on collaborations and advice for training the 
next generation of students to skillfully leverage sensing technology 
to advance the future of developmental science.

5.1 | Collection of raw data

The main considerations for collection of raw sensor data include 
form factor and placement, commercial versus bespoke solutions, 
single versus multi‐system platforms, and protection of privacy.

5.1.1 | Sensor selection

Currently, the main options for form factor and placement are mo‐
bile phones, wearable on‐body sensors and static (i.e., environmen‐
tal) sensors. Mobile phones are perhaps the most widely used in 
contemporary computational social science efforts, owing to their 
ubiquity and the extensive range of raw datastreams collected by 
a single platform (Harari et al., 2017). The ubiquity of smart phones 
means there is a potential to engage diverse and hard‐to reach popu‐
lations (Sandstrom, Lathia, Mascolo, & Rentfrow, 2016). Given that 
mobile phones are already being charged and cared for by partici‐
pants, they do not pose much burden beyond privacy concerns. Both 

open source and commercial applications to collect sensor data from 
phones exist, and we point the interested reader to recently pub‐
lished existing guides for more information (Harari et al., 2016).

In contrast, on‐body sensors are more inconvenient, in that they 
are an additional device that requires active care by participants (e.g., 
charging, diligence with taking on and off, and correct positioning). 
However, as they are positioned directly on the body, wearable sen‐
sors typically provide much higher quality markers of individual ac‐
tivity. To reduce participant burden in extended recording sessions, 
comfortable devices with long battery life and quick‐charging capa‐
bilities are critical. Alternatively, multiple devices can be provided 
to be alternated while charging. Another relevant consideration is 
the availability and size of on board storage. Devices that stream 
data require an additional device and may be more prone to data 
loss. Additionally, access to high‐density raw data as well as tools 
for visualization or analysis of data may should be considered when 
selecting sensors.

While our sensing review above focused on data collected from 
wearable and mobile sensors, static location sensors can capture a 
variety of interesting datastreams, from physiological data (Adib, 
Mao, Kabelac, Katabi, & Miller, 2015) and sleep (Rahman et al., 2015) 
to	physical	presence	(Olguín	et	al.,	2009).	Such	static	sensor	systems	
are not currently available commercially for research purposes but 
their active development within the ubicomp community suggests 
that they may soon be. The main benefits of static‐device sensing 
is that they beyond privacy concerns they are very low burden for 
participants, as they require no charging or active care, and they 
can be much more powerful as they can be directly connected to 
wifi and power sources. However, as it is expensive to instrument 
many spaces with such sensors, data from static sensors will likely 
not be continuous. Thus, one consideration when considering static 
sensors is whether interactions of interest are spatially localized or 
could be adequately characterized in a single spatial area, for exam‐
ple, activity surrounding dinner or bed times.

Several platforms exist for each of these form factors, with 
consumer	 market,	 do‐it‐yourself	 (DIY),	 or	 bespoke	 (customizable)	
options. While consumer‐market sensors are typically the most 
user‐friendly, the challenge with using them for research is that raw, 
high‐temporal resolution signals may be inaccessible. Raw sensor 
data are almost always heavily pre‐processed via a proprietary algo‐
rithm—which may, for example, average over much data to make up 
for noisy or low‐quality sensors. Whether this is a concern depends 
on the nature of the phenomenon under study. As with all other sen‐
sors, it is advisable to test data validity against a gold‐standard in a 
setting analogous to the true protocol.

It is not difficult to find engineers and computer scientists at 
local universities interested in collaborating on device construction 
or in modifying a commercially available open‐source sensor plat‐
form	 (e.g.,	Arduino	or	Raspberry	Pi).	The	benefit	of	DIY‐sensors	 is	
in the direct control over the configuration of the device, including 
sensed modalities and data precision. While a novel sensor can be 
developed in a semester or two by a good graduate student, a major 
consideration is the ultimate usability of the device. Commercial 
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products have teams of designers to ensure comfort, look, and ease 
of use of devices. Without significant investments there is danger of 
a functional but practically unusable device. Also, depending on the 
complexity of the request, for example, whether circuit boards can 
be purchased or need to be assembled, these devices can quickly 
become physically unwieldly.

Customizable wearable devices (e.g., mbientlabs.com, move‐
sense.com) or those built specifically for the research community 
(e.g., axivity.com, movisens.com, empatica.com) combine many of 
the	benefits	of	commercial	and	DIY	options.	These	companies	em‐
ploy both engineers and designers, typically resulting in a functional 
and usable device. Additionally, because they are catering to re‐
searchers, they typically provide access to raw data and potentially 
relevant activity detection algorithms (e.g., heart beats or sleep de‐
tection). While customization may be possible, it will likely be more 
expensive than working with someone local, and the company may 
not be willing to work on specialized datastreams if they are not of 
financial gain. Also, companies may go out of business, or go in a 
different direction and stop supporting a certain device.

5.1.2 | Single versus multi‐sensor platforms

Characterizing complex activity may require multiple datastreams. 
For example, examining parental responses to child tantrums might 
involve combining audio, motion and proximity sensing. Some off‐
the shelf options exist that combine wearable sensors with mobile 
phone apps that collect additional data. However, existing options 
may be limited in terms of available datastreams, meaning a sin‐
gle‐platform solution may not be feasible. When considering multi‐
sensor platforms, a major concern is synchronization. Even if each 
device logs time information, the clocks of individual devices may 
not be synchronized. Additionally, clocks may drift over the course 
of data collection, meaning some datapoints (i.e., time‐value pairs) 
are lost or skipped and time is effectively “compressed.” This may 
not be an issue if high‐temporal precision is not required for ex‐
pected analyses. For example, if hourly summaries of motion data 
are going to be compared with EMA responses, then a few seconds 
of drift is not cause for concern. However, if planned analyses re‐
quire synchronization to within five or even 10 minutes, testing and 
potentially correcting for time lags drift is advised.

As drift can irregularly affect individual devices, it may be nec‐
essary to provide synchronization signals throughout the course of 
the	recordings.	One	solution	is	to	build	a	central	“timekeeping”	de‐
vice that pings multiple devices. However, this may be impossible 
if your platform includes commercial devices that cannot be repro‐
grammed, such as the LENA. An alternative solution is to devise a 
manual synchronization protocol. The key to developing a synchro‐
nization routine is to identify a signal that will be registered by at 
least one datastream on each device: a clap, for example, can be both 
heard and seen (via audio or video) and has a unique motion signal 
(detectable via accelerometer), and thus functions as a good synch‐
ing cue between these devices. “Synch signals” may not be easy to 
detect in the milieu of a long (1 hr–2 week) session, especially if they 

occur sporadically throughout an extended session and other activi‐
ties could mask the synch cue. In this case, something that will stand 
out	more	may	be	necessary.	Our	favorites	include:	a	very rapid mo‐
tion (12–16 g “slam” onto a soft surface), especially if in a sequence 
of motions (e.g., two slams, a zigzag on the table, and then two slams; 
see also Ploetz, Chen, Hammerla, & Abowd, 2012). Additionally, add‐
ing event‐markers around the synch routine is useful for identify‐
ing roughly when synch signals will occur. Given these challenges, 
complete synchronization pipelines should be piloted and assessed 
before study data are collected.

5.1.3 | Privacy issues

The possibility to capture activity in high‐resolution begs the ques‐
tion of participant privacy (Klasnja, Consolvo, Choudhury, Beckwith, 
& Hightower, 2009). Several high‐profile cases indicate that sensor 
data can have legal consequences, including a recent case in which 
audio‐recordings stored by a voice‐controlled speaker were used as 
evidence in a trial (Sweetland Edwards, 2017; Tokson, 2017). These 
issues may be disproportionately faced by vulnerable populations 
such as undocumented immigrants, activists, and people of color, all 
of whom are more likely to be targets of police violence and intimi‐
dation. For high‐risk individuals it may be preferable to simply not 
collect high‐density data.

Ultimately, we need to educate potential participants about what 
might happen with their data if it is breached or legally requested 
(e.g., whether it can be linked back to them, and what it might be 
able to tell others about them) before they decide to participate. The 
ubiquity of consumer sensors means that potential participants are 
likely already sharing various datastreams with companies. However, 
consumers may be unaware of this. For example, in a recent survey 
we completed, over 40% of participants who marked they were un‐
willing to collect random samples of audio data for research purposes 
also indicated that they have or would use a voice‐controlled device 
if it were free (Levine et al, in preparation). Thus, while educating par‐
ticipants appears proper, it remains unclear whether providing indi‐
viduals with information about their existing devices will make them 
more or less comfortable participating in sensing research. However, 
even individuals who are somewhat uncomfortable with data use and 
sharing policies are often willing to share personal data when they 
perceive concrete benefits to doing so (Matthews, Abdullah, Gay, & 
Choudhury, 2014; Zhang, De Choudhury, & Grudin, 2014).

There are a number of ways to build in privacy protections for 
research participants. The basis of these techniques is that the collec‐
tion and storage of low‐resolution data will suffice for many analyses 
(e.g., storing GPS coordinates at the block rather than address level). 
The more that the scale of data obscures identification of an indi‐
vidual participant, the more privacy protection is afforded. Similarly, 
audio and image data can be subsampled to obscure continuous 
content. Another technique is to store features of interest rather 
than raw data, a technique that has been deployed both with audio 
(Wyatt et al., 2011) and image data (Thomaz, Parnami, Bidwell, Essa, 
& Abowd, 2013). Computations can be done on the collection device, 
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meaning that it is not necessary to store or transfer data to devices or 
study servers. Note that at preliminary stages of research it may be 
necessary to collect and store continuous raw datasets which is often 
critical for the development of novel activity recognition algorithms.

5.2 | Translating raw data into markers of 
meaningful activity

High‐quality tutorials for activity recognition are available (Bulling 
et al., 2014). Additionally, many machine learning models commonly 
used for activity recognition are freely available online (e.g., Python 
sci‐kit). Thus, even with no prior experience with activity recogni‐
tion, advanced undergraduate or masters level computer science 
students can train and test activity‐recognition models.

When working to develop novel activity‐recognition models, 
or when simply evaluating an existing model, there are a num‐
ber of considerations. First, it is necessary to carefully plan and 
evaluate the dataset used to train the algorithm. Training datasets 
collected under “ideal” laboratory conditions may be vastly dif‐
ferent than the real‐world conditions in which they will be used, 
ultimately reducing the validity of the detected markers. For ex‐
ample, while developing a model to identify holding and carrying 
behaviors, early model performance went from 90% accuracy to 
less than chance after transitioning from a cued paradigm to a 
naturalistic, free‐flowing recording. In the former case, caregivers 
always picked infants up off the ground beginning from a stand‐
ing position. In the latter case, there was much more variation in 
pick‐up behaviors—infants were lifted from standing and sitting 
positions on couches, changing tables, and the floor, which proved 
to	be	much	more	challenging	to	detect.	Our	naturalistic	recording	
also included many more negative instances of our behaviors of 
interest, such as picking a toy up off the ground. The presence 
of such negative training examples is critical for developing a ro‐
bust algorithm that will succeed in real‐world conditions (for final 
model,	see	Yao,	Ploetz,	Johnson	&	de	Barbaro,	under	review).	For	
these reasons, training data should map onto the true study data 
as closely as possible, and performance should be assessed in real‐
world conditions whenever possible.

Next, while an algorithm may have high accuracy overall, it 
is necessary to consider accuracy for each individual distinction 
interest within the class, considering both precision (i.e. positive 
predictive value) as well as recall (i.e. sensitivity). Additionally, it 
is advisable to assess the performance of algorithms qualitatively 
via visualizations in addition to quantitatively. Algorithms are de‐
signed only to optimize correct predictions, and thus may grossly 
underperform. For example, the optimal solution algorithmically 
may be to predict the most common behavior for the entire ses‐
sion, an unappealing solution that may be masked by overall ac‐
curacy scores. Finally, measures of accuracy utilized within these 
studies are different from those traditionally relied upon in social 
science and thus it is worth additionally assessing reliability using 
metrics familiar to other psychologists (e.g., Cohen's Kappa; see 
Bakeman & Quera, 2011).

5.3 | Analysis of behavioral markers

The scale of data possible to collect with sensors is much larger and 
less bounded than data collected in laboratory settings, meaning 
that the timescales, operationalization, and impacts of daily activ‐
ity may not be specified by existing research or theory. Ultimately, 
identification and operationalization of relevant constructs and their 
role in shaping developmental trajectories will involve experimenta‐
tion and, above all, a willingness to become familiar with the data.

5.3.1 | Visualization and iterative processing of data

Data visualizations can provide insight into the structure of phe‐
nomena of interest and its variation over time or participants. They 
can also aid in the generation of hypotheses without the constraints 
of predetermined analyses that might obscure structure in the data  
(de Barbaro, Johnson, Forster et al., 2013; Gnisci et al., 2008). In 
particular, iterative cycles between visualizations of raw and semi‐
processed data can be useful for converging upon variables that 
can	accurately	capture	phenomena	of	interest	(Fricker,	Zhang,	&	Yu,	
2011;	Yu,	Yurovsky,	&	Xu,	2012).	 In	 later	stages,	visualizations	are	
key for identifying and refining appropriate quantitative methods to 
describe or model behaviors of interest. A number of papers detail 
the process of visualizing high‐density mobile sensor data to pro‐
vide these insights (Polack et al., 2018; Sharmin et al., 2015; Zisook, 
Hernandez, Goodwin, & Picard, 2013).

5.3.2 | Nested timescales in the analysis of 
continuous behavior

Leveraging the temporal organization of behavior can be useful 
for structuring analyses. Behavior is organized across many time‐
scales. At the timescale of seconds, we can observe contingent 
gaze shifts and vocalizations, at timescales of minutes and hours, 
we can observe episodes of play or arguments, and at the timescale 
of months or years, we can observe the blossoming of a relation‐
ship. These nested timescales are relevant when considering how 
to analyze many hours of data possible to collect with mobile sen‐
sors. Parsing continuous datastreams of frame‐by‐frame activity 
into meaningful episodes at the timescale of minutes and hours—
such as episodes of distress, play or joint activity—is a useful way 
to structure analyses of high‐density data. This can be particularly 
insightful if these episodes occur repeatedly within a single ses‐
sion as well as within sessions across longitudinal data collection. 
For example, to study the changing nature of triadic activity across 
the first year, de Barbaro and colleagues identified all instances 
of “maternal bids” within mother–infant free‐play interactions (de 
Barbaro, Johnson, Forster & Deák, 2016). By comparing changes in 
infants object looking and touching following maternal bids across 
the longitudinal time period, it was possible to characterize more 
gradual and continuous shifts in multiple dimensions of activity 
which contributed to the emergence of classic triadic interactions 
around the end of the first year (de Barbaro, Johnson, & Deák, 
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2013; de Barbaro, Johnson, Forster, & Deák, 2016). In effect, the 
maternal bid episodes functioned as a naturally occurring spon‐
taneous “trigger” for an event‐related analysis. This allowed us to 
summarize and compare the event‐related micro‐dynamics of ac‐
tivity across longitudinal time (see also Forster & Rodriguez, 2006, 
and de Barbaro, Johnson, Forster et al., 2013, for a more extensive 
discussion of this approach).

5.3.3 | Avoiding datamining

The iterative nature of the analysis of high‐density data makes 
it susceptible to the critique of datamining. Insofar as tinkering 
with data can lead to spurious results, this is a legitimate concern. 
However, it cannot be a paralyzing fear as iterative analyses are 
likely necessary at the early stages of computational social science 
research.

To avoid spurious findings, it is best to select a subset of data 
which will be used for the sake of gaining insight into the structure 
of the dataset. Later, this subset can be used to develop and test 
that any new measures or variables validly and appropriately capture 
the phenomena of interest. The remainder of the sample should be 
analyzed only after measures have been finalized within this subset 
(see also de Barbaro, Johnson, Forster et al., 2013). This is a logic 
analogous to that used in machine learning where a subset of train‐
ing data is “held out” to test the results of the model. Testing on 
a subset ensures that the model is not overfit to the particulars of 
the training dataset. Finally, just as in any scientific paper, accurate 
reporting of the complete analysis protocol (including all variations 
tested) is necessary for a fair assessment of the quality and legiti‐
macy of the results.

5.4 | Collaborations and Training

Mobile sensing research requires expertise across domains. Electrical 
engineers build circuit hardware and the low‐level “firmware” that 
runs on them. Experts in human–computer interaction design the 
platforms and form factors that allow sensors to seamlessly inte‐
grate into daily interactions. Data security and privacy ethicists are 
necessary to understand and communicate the potential risks of 
data breaches as it becomes increasingly difficult to guarantee that 
data are not identifiable. Computer science and data analysts pro‐
vide powerful algorithms and visualization tools that aid in making 
sense of the immense amounts of data that can now be collected.

Critically, social scientists provide motivation and insight into 
phenomena of interest, as well as theoretical and practical knowl‐
edge that can carve meaning from multitudes of data, and ultimately 
construct new theories of development.

For those wanting to become involved in mobile sensing research, 
the range of necessary expertise may appear a daunting challenge. 
Given traditional disciplinary boundaries, this will typically be an 
interdisciplinary effort requiring wide‐reaching collaborations. For 
psychology students wanting to become pursue computational so‐
cial science research, we provide some training guidelines.

The availability of off‐the‐shelf sensors is relatively good and 
thus it is not necessary to gain electrical engineering skills to pursue 
sensing research. However, for those interested, there are a number 
of basic hands‐on tutorials which provide basic understanding of cir‐
cuits and the firmware that runs on them, (e.g., the Arduino Starter 
Kit, available online). Experience with synchronization of sensors 
and merging data across diverse timescales will need to be learned 
independently by experimentation, or from working in a develop‐
mental lab that collects and annotates video data (see also Bakeman 
& Quera, 2011; Gottman, 1981).

The basic programming necessary to work with and analyze 
sensor data can be attained in two to six college‐level courses. 
Introductory programming courses will cover necessary basics of 
data structure, manipulation, and visualization. This material is also 
available in online tutorials and user manuals (e.g., at mathworks.
com or python.org). Some training in timeseries analyses or machine 
learning is also beneficial. A timeseries analysis course will cover 
basics such as interpolation, filtering and time‐ and frequency‐ do‐
main analyses used to quantify and describe timeseries. There are 
excellent resources for timeseries analyses written specifically for 
those without extensive quantitative or computational training 
(Gottman, 1981). Nearly every computer science department will 
have a machine learning course which should be accessible with 
basic statistics and programming experience. More specialized ex‐
perience in activity recognition may also be desired, and is available 
in select engineering or computer science departments, or via on‐
line tutorials.

Note that basic formatting, manipulation, and visualization of 
sensor data can be done in Excel, and commercial software for 
video annotation and sensor data collection typically include vi‐
sualization and analysis capabilities. These programs are often re‐
strictive, especially when complex or flexible operationalizations 
are necessary, and they are typically not programmable, meaning 
that any work done on an individual session must be repeated 
over the complete dataset. However, they can be a good start for 
students uncertain about committing to more extensive compu‐
tational training. These programs can also be very useful as they 
allow rapid examination of data and where basic tools are suffi‐
cient for analyses.

6  | CONCLUSIONS

Insofar as we can leverage sensor data to access the processes by 
which daily activity and interaction shape trajectories across the 
lifespan, mobile sensing tools provide a unique—indeed, transforma‐
tive—opportunity for developmental science. If successful, these 
tools can provide insight into new mechanisms of development: 
how structure and variation in our daily environments and experi‐
ences matter for outcomes. With repeated samples at large scale, 
such data can move us beyond simple causal models of behavior to 
understanding how complex non‐linear dynamics can shape devel‐
opmental trajectories.

http://mathworks.com
http://mathworks.com
http://python.org
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Much work remains to be done before this grand promise of 
mobile sensors for developmental science can become a reality. 
Meeting these challenges will require coordinated interdisciplin‐
ary efforts with social scientists involved throughout the research 
process. The involvement of social scientists is critical for guiding 
not only the questions that are asked, but the next generation of 
engineering and computer science research: what is sensed and 
how algorithms discover meaningful structure in data.
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